The scribe package provides a means of defining
command line argument inputs for use with the Rscript
utility. Users will primarily use the command_args()
function to capture the command line arguments and initialize a
scribeCommandArgs
object. A scribeCommandArgs
is a Reference
Class object with methods to configure how to parse these
arguments for use within R.
Let’s look at to use the scribe class first. Our goal
is to wrap a simple function to generate a sequence of integers or
letters. Here we build out a scribeCommandArgs
object, add
a couple of arguments with the $add_argument()
method, then
parse into a named list with $parse()
.
ca <- command_args(c("-n", "5", "--method", "numbers"))
ca$add_argument("-n", default = 1L)
ca$add_argument("--method", default = "letters")
args <- ca$parse()
out <- seq_len(args$n)
method <- match.arg(args$method, c("letters", "numbers"))
if (method == "letters") {
out <- letters[out]
}
out
#> [1] 1 2 3 4 5
In the example above we specify what the command line arguments are
within command_args()
. The intended utility of this is to
capture these arguments when passe within an Rscript
file.
Below is the same structure, but as we would expect from within a script
intended to be called from a command line. command_args()
will grab whatever command line arguments are passed to the script.
#!/usr/bin/env Rscript
# filename: seq_len.R
library(scribe)
ca <- command_args()
ca$add_argument("-n", default = 1L)
ca$add_argument("--method", default = "letters")
args <- ca$parse()
out <- seq_len(args$n)
method <- match.arg(args$method, c("letters", "numbers"))
if (method == "letters") {
out <- letters[out]
}
out
seq_len.R -n 3
#> [1] "a" "b" "c"
seq_len.R -n 3 --method numbers
#> [1] 1 2 3
One way I like to use scribe is by passing the values
directly to another function via do.call()
.
Two examples provided that find a specified dataset and then perform
something to it. Were I to use this personally, I would probably pass a
file path and use a read function first, rather than the
get()
function.
my_summary <- function(data, levels = 7, sig_figs = 3, q_type = 7) {
data <- get(data, mode = "list")
stopifnot(is.data.frame(data))
summary(data, maxsum = levels, digits = sig_figs, quantile.type = q_type)
}
my_model <- function(data, correlation = FALSE) {
data <- get(data, mode = "list")
stopifnot(is.data.frame(data))
form <- stats::DF2formula(data)
mod <- stats::lm(form, data)
summary(mod, correlation = correlation)
}
ca <- command_args(string = "CO2 --levels 3 --sig-figs 2 --q-type 3")
ca$add_description("Summarise a dataset")
ca$add_argument(
"data",
info = "Name of the dataset to find"
)
ca$add_argument(
"--levels",
default = 7L,
info = "Maximum number of levels shown for factors"
)
ca$add_argument(
"--sig-figs",
default = 3L,
info = "Number of significant figures"
)
ca$add_argument(
"--q-type",
default = 7L,
info = "Quantile type"
)
args <- ca$parse()
do.call(my_summary, args)
#> Plant Type Treatment conc uptake
#> Qn1 : 7 Quebec :42 nonchilled:42 Min. : 95 Min. : 7.7
#> Qn2 : 7 Mississippi:42 chilled :42 1st Qu.: 175 1st Qu.:17.9
#> (Other):70 Median : 350 Median :28.1
#> Mean : 435 Mean :27.2
#> 3rd Qu.: 675 3rd Qu.:37.1
#> Max. :1000 Max. :45.5
ca <- command_args(string = "attitude --correlation")
ca$add_argument(
"data",
info = "Name of the dataset to find"
)
ca$add_argument(
"--correlation",
action = "flag",
info = "When set, prints the correlation matrix of estimated parameters"
)
args <- ca$parse()
do.call(my_model, args)
#>
#> Call:
#> stats::lm(formula = form, data = data)
#>
#> Residuals:
#> Min 1Q Median 3Q Max
#> -10.9418 -4.3555 0.3158 5.5425 11.5990
#>
#> Coefficients:
#> Estimate Std. Error t value Pr(>|t|)
#> (Intercept) 10.78708 11.58926 0.931 0.361634
#> complaints 0.61319 0.16098 3.809 0.000903 ***
#> privileges -0.07305 0.13572 -0.538 0.595594
#> learning 0.32033 0.16852 1.901 0.069925 .
#> raises 0.08173 0.22148 0.369 0.715480
#> critical 0.03838 0.14700 0.261 0.796334
#> advance -0.21706 0.17821 -1.218 0.235577
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> Residual standard error: 7.068 on 23 degrees of freedom
#> Multiple R-squared: 0.7326, Adjusted R-squared: 0.6628
#> F-statistic: 10.5 on 6 and 23 DF, p-value: 1.24e-05
#>
#> Correlation of Coefficients:
#> (Intercept) complaints privileges learning raises critical
#> complaints -0.07
#> privileges -0.12 -0.37
#> learning -0.16 -0.30 -0.14
#> raises -0.08 -0.52 0.08 -0.21
#> critical -0.66 0.00 -0.02 0.20 -0.28
#> advance 0.02 0.40 -0.18 -0.35 -0.43 -0.13